Practice Exam 2 — Functional Analysis (WIFA-08)

University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or "42" is not sufficient.

Problem 1

Let X and Y be Banach spaces. Prove that:

- (a) $||(x,y)||_{\infty} = \max\{||x||, ||y||\}$ is a norm on the Cartesian product $X \times Y$;
- (b) $(X \times Y, \|\cdot\|_{\infty})$ is a Banach space (i.e., every Cauchy sequence is convergent);
- (c) $(X \times Y, \|\cdot\|_{\infty})$ is not a Hilbert space.

Problem 2

Let X be Hilbert space with an orthonormal basis $\{e_n : n \in \mathbb{N}\}$. Let (λ_n) be a bounded sequence in \mathbb{K} and consider the following linear operator:

$$T: X \to X, \quad Tx = \sum_{n=1}^{\infty} \lambda_n(x, e_n) e_n, \quad x \in X.$$

Prove the following statements:

- (a) $||T|| = \sup_{n \in \mathbb{N}} |\lambda_n|;$
- (b) $\lambda_n \to 0$ implies that T is compact;
- (c) $\sigma(T) = \operatorname{clos} \{\lambda_n : n \in \mathbb{N}\}.$

Problem 3

- (a) Formulate the uniform boundedness principle.
- (b) Let X be a Hilbert space, let $T: X \to X$ be a linear operator, and assume that

$$(Tx, y) = (x, Ty)$$
 for all $x, y \in X$.

Prove the following statements:

- (i) for $y \neq 0$ the map $f_y : X \to \mathbb{K}$ defined by $f_y(x) = (Tx, y)/||y||$ is linear;
- (ii) $\sup_{y\neq 0} |f_y(x)| < \infty$ for all $x \in X$;
- (iii) T is bounded.

Problem 4

Let X be a normed linear space. For $V \subset X$ and $Z \subset X'$ nonempty subsets, define

$$V^{\perp} = \{ f \in X' : f(x) = 0 \text{ for all } x \in V \},\$$

 ${}^{\perp}Z = \{ x \in X : f(x) = 0 \text{ for all } f \in Z \}.$

Prove the following statements:

- (a) $^{\perp}Z$ is a linear subspace of X;
- (b) $^{\perp}Z$ is closed in X;
- (c) $Z_1 \subset Z_2 \subset X' \Rightarrow {}^{\perp}Z_2 \subset {}^{\perp}Z_1;$
- (d) $Z \subset (^{\perp}Z)^{\perp}$.

End of test (90 points)

Solution of Problem 1

- (a) Clearly $||(x, y)||_{\infty} \ge 0$. If $||(x, y)||_{\infty} = 0$ then both ||x|| = 0 and ||y|| = 0 which shows that (x, y) = (0, 0).
 - If $\lambda \in \mathbb{K}$ then

$$\|\lambda(x,y)\|_{\infty} = \|(\lambda x, \lambda y)\|_{\infty}$$
$$= \max\{\|\lambda x\|, \|\lambda y\|\}$$
$$= \max\{|\lambda|\|x\|, |\lambda|\|y\|\}$$
$$= |\lambda|\max\{\|x\|, \|y\|\}$$
$$= |\lambda|\|(x,y)\|_{\infty}.$$

Finally,

$$\|(x,y) + (u,v)\|_{\infty} = \|(x+u,y+v)\|_{\infty}$$

= max{ $\|x+u\|, \|y+v\|$ }
 $\leq \max\{\|x\| + \|u\|, \|y\| + \|v\|$ }
 $\leq \max\{\|x\|, \|y\|\} + \max\{\|u\|, \|v\|\}$
= $\|(x,y)\|_{\infty} + \|(u,v)\|_{\infty}.$

(b) Let (x_n, y_n) be a Cauchy sequence in $X \times Y$. For each $\varepsilon > 0$ there exists N > 0 such that

$$n, m \ge N \quad \Rightarrow \quad \|(x_n, y_n) - (x_m, y_m)\|_{\infty} \le \varepsilon$$
$$\Rightarrow \quad \|(x_n - x_m, y_n - y_m)\|_{\infty} \le \varepsilon$$
$$\Rightarrow \quad \|x_n - x_m\| \le \varepsilon \quad \text{and} \quad \|y_n - y_m\| \le \varepsilon.$$

This means that (x_n) is a Cauchy sequence in X and (y_n) is a Cauchy sequence in Y. Since X and Y are assumed to be Banach spaces there exist $x \in X$ and $y \in Y$ such that

$$||x_n - x|| \to 0$$
 and $||y_n - y|| \to 0.$

This implies that

$$\|(x_n, y_n) - (x, y)\|_{\infty} = \|(x_n - x, y_n - y)\|_{\infty}$$
$$= \max\{\|x_n - x\|, \|y_n - y\|\} \to 0.$$

We conclude that (x_n, y_n) has the limit (x, y).

(c) Pick $x \in X$ with ||x|| = 1 and $v \in Y$ with ||v|| = 1, then

$$\|(x,0)\|_{\infty} = 1, \quad \|(0,v)\|_{\infty} = 1, \quad \|(x,v)\|_{\infty} = 1, \quad \|(x,-v)\|_{\infty} = 1,$$

which shows that

$$\|(x,0) + (0,v)\|_{\infty}^{2} + \|(x,0) - (0,v)\|_{\infty}^{2} \neq 2\|(x,0)\|_{\infty}^{2} + 2\|(0,v)\|_{\infty}^{2}.$$

- Page 3 of 6 --

Since the parallelogram identity does not hold, it follows that the norm $\|\cdot\|_{\infty}$ on $X \times Y$ is not induced by an inner product. Hence, $(X \times Y, \|\cdot\|_{\infty})$ is not a Hilbert space.

Solution of Problem 2

(a) For each $x \in X$ we have

$$||Tx||^{2} = \sum_{n=1}^{\infty} |\lambda_{n}|^{2} |(x, e_{n})|^{2} \le \sup_{n \in \mathbb{N}} |\lambda_{n}|^{2} \sum_{n=1}^{\infty} |(x, e_{n})|^{2} = \sup_{n \in \mathbb{N}} |\lambda_{n}|^{2} ||x||^{2},$$

which implies that

$$||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||} \le \sup_{n \in \mathbb{N}} |\lambda_n|.$$

Now write $K = \sup_{n \in \mathbb{N}} |\lambda_n|$. For each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $|\lambda_N| > K - \varepsilon$. Hence,

$$\frac{\|Te_N\|}{\|e_N\|} = |\lambda_N| > K - \varepsilon.$$

Hence we conclude

$$||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||} = \sup_{n \in \mathbb{N}} |\lambda_n|.$$

(b) Assume that $\lambda_n \to 0$. Define the operator

$$T_k: X \to X, \quad T_k x = \sum_{n=1}^k \lambda_n(x, e_n) e_n, \quad x \in X.$$

By part (a) it follows that $||T_k|| = \max\{|\lambda_1|, \ldots, |\lambda_k|\}$ so that T_k is bounded. In addition, dim ran $T_k \leq k < \infty$. Hence, T_k is compact for each $k \in \mathbb{N}$. Also note that

$$||T - T_k|| = \sup_{n > k} |\lambda_n|.$$

Let $\varepsilon > 0$ be arbitrary. There exists N > 0 such that

$$n \ge N \quad \Rightarrow \quad |\lambda_n| \le \varepsilon$$
$$\Rightarrow \quad ||T - T_n|| \le \varepsilon$$

This implies that T is compact as well.

(c) Clearly, each λ_n is an eigenvalue of T with corresponding eigenvector e_n . Hence, $\{\lambda_n : n \in \mathbb{N}\} \subset \sigma(T)$. Since the spectrum of a linear operator is closed it also follows that clos $\{\lambda_n : n \in \mathbb{N}\} \subset \sigma(T)$.

If $\lambda \notin \operatorname{clos} \{\lambda_n : n \in \mathbb{N}\}$ then there exists a $\delta > 0$ such that $|\lambda - \lambda_n| > \delta$ for each $n \in \mathbb{N}$. Note that

$$(T - \lambda)^{-1}x = \sum_{n=1}^{\infty} \frac{1}{\lambda_n - \lambda} (x, e_n) e_n, \quad x \in X$$

— Page 4 of 6 —

Hence,

$$||(T-\lambda)^{-1}x||^{2} = \sum_{n=1}^{\infty} \frac{|(x,e_{n})|^{2}}{|\lambda_{n}-\lambda|^{2}} \le \frac{1}{\delta^{2}} \sum_{n=1}^{\infty} |(x,e_{n})|^{2} = \frac{1}{\delta^{2}} ||x||^{2}.$$

Hence, $(T - \lambda)^{-1}$ is bounded so that $\lambda \in \rho(T)$. We conclude that $\sigma(T) =$ clos { $\lambda_n : n \in \mathbb{N}$ }.

Solution of Problem 3

(a) Let X be a Banach space and let Y be a normed linear space. Let $F \subset B(X, Y)$ and assume that

$$M = \left\{ x \in X : \sup_{T \in F} \|Tx\| < \infty \right\}$$

is nonmeager. Then the elements $T \in F$ are uniformly bounded:

$$\sup_{T\in F} \|T\| < \infty$$

(b) (i) The fact that $f_y : X \to \mathbb{K}$ defined by $f_y(x) = (Tx, y)/||y||$ is a linear map follows from:

$$f_y(\lambda x + \mu z) = \frac{(T(\lambda x + \mu z), y)}{\|y\|}$$
$$= \frac{(\lambda T x + \mu T z, y)}{\|y\|}$$
$$= \frac{\lambda (T x, y)}{\|y\|} + \frac{\mu (T z, y)}{\|y\|}$$
$$= \lambda f_y(x) + \mu f_y(z).$$

(ii) Let $x \in X$ be arbitrary, then

$$|f_y(x)| = \frac{|(Tx, y)|}{\|y\|} \le \frac{\|Tx\| \|y\|}{\|y\|} = \|Tx\|.$$

This shows that

$$\sup_{y \neq 0} |f_y(x)| < \infty$$

for all $x \in X$.

(iii) By the uniform boundedness principle it follows that $\sup_{y\neq 0} ||f_y|| < \infty$. Since (Tx, y) = (x, Ty) it follows with x = Ty/||y|| that

$$\frac{\|Ty\|^2}{\|y\|^2} = f_y\left(\frac{Ty}{\|y\|}\right) \le \|f_y\|\frac{\|Ty\|}{\|y\|}$$

so that

$$||T|| = \sup_{y \neq 0} \frac{||Ty||}{||y||} \le \sup_{y \neq 0} ||f_y|| < \infty$$

which shows that T is bounded.

$$-$$
 Page 5 of 6 $-$

Solution of Problem 4

(a) Assume that $x, y \in {}^{\perp}Z$ and $\lambda, \mu \in \mathbb{K}$. If $f \in Z$, then

$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y) = 0,$$

which implies that $\lambda x + \mu y \in {}^{\perp}Z$ as well. This shows that ${}^{\perp}Z$ is a linear subspace of X.

(b) Assume that $x_n \in {}^{\perp}Z$ for all $n \in \mathbb{N}$ and $x_n \to x$. If $f \in Z$, then $f(x_n) = 0$ for all $n \in \mathbb{N}$ so that

$$|f(x)| = |f(x - x_n) + f(x_n)|$$

$$\leq |f(x - x_n)| + |f(x_n)|$$

$$= |f(x - x_n)|$$

$$\leq ||f|| ||x_n - x|| \to 0.$$

This implies that f(x) = 0 so that $x \in {}^{\perp}Z$ as well. Hence, ${}^{\perp}Z$ is closed in X.

- (c) Let $x \in {}^{\perp}Z_2$, then f(x) = 0 for all $f \in Z_2$. Since $Z_1 \subset Z_2$ it follows that f(x) = 0 for all $f \in Z_1$, which means that $x \in {}^{\perp}Z_1$. Hence, ${}^{\perp}Z_2 \subset {}^{\perp}Z_1$.
- (d) If $f \in Z$, then f(x) = 0 for all $x \in {}^{\perp}Z$. Hence, $f \in ({}^{\perp}Z)^{\perp}$.