
Practice Exam 2 — Functional Analysis (WIFA–08)

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

Problem 1

Let X and Y be Banach spaces. Prove that:

(a) ‖(x, y)‖∞ = max{‖x‖, ‖y‖} is a norm on the Cartesian product X × Y ;

(b) (X × Y, ‖ · ‖∞) is a Banach space (i.e., every Cauchy sequence is convergent);

(c) (X × Y, ‖ · ‖∞) is not a Hilbert space.

Problem 2

Let X be Hilbert space with an orthonormal basis {en : n ∈ N}. Let (λn) be a
bounded sequence in K and consider the following linear operator:

T : X → X, Tx =
∞
∑

n=1

λn(x, en)en, x ∈ X.

Prove the following statements:

(a) ‖T‖ = supn∈N |λn|;

(b) λn → 0 implies that T is compact;

(c) σ(T ) = clos {λn : n ∈ N}.

Problem 3

(a) Formulate the uniform boundedness principle.

(b) Let X be a Hilbert space, let T : X → X be a linear operator, and assume that

(Tx, y) = (x, Ty) for all x, y ∈ X.

Prove the following statements:

(i) for y 6= 0 the map fy : X → K defined by fy(x) = (Tx, y)/‖y‖ is linear;

(ii) supy 6=0
|fy(x)| < ∞ for all x ∈ X ;

(iii) T is bounded.
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Problem 4

Let X be a normed linear space. For V ⊂ X and Z ⊂ X ′ nonempty subsets, define

V ⊥ = {f ∈ X ′ : f(x) = 0 for all x ∈ V },

⊥Z = {x ∈ X : f(x) = 0 for all f ∈ Z}.

Prove the following statements:

(a) ⊥Z is a linear subspace of X ;

(b) ⊥Z is closed in X ;

(c) Z1 ⊂ Z2 ⊂ X ′ ⇒ ⊥Z2 ⊂
⊥Z1;

(d) Z ⊂ (⊥Z)⊥.

End of test (90 points)
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Solution of Problem 1

(a) Clearly ‖(x, y)‖∞ ≥ 0. If ‖(x, y)‖∞ = 0 then both ‖x‖ = 0 and ‖y‖ = 0 which
shows that (x, y) = (0, 0).

If λ ∈ K then

‖λ(x, y)‖∞ = ‖(λx, λy)‖∞

= max{‖λx‖, ‖λy‖}

= max{|λ|‖x‖, |λ|‖y‖}

= |λ|max{‖x‖, ‖y‖}

= |λ|‖(x, y)‖∞.

Finally,

‖(x, y) + (u, v)‖∞ = ‖(x+ u, y + v)‖∞

= max{‖x+ u‖, ‖y + v‖}

≤ max{‖x‖+ ‖u‖, ‖y‖+ ‖v‖}

≤ max{‖x‖, ‖y‖}+max{‖u‖, ‖v‖}

= ‖(x, y)‖∞ + ‖(u, v)‖∞.

(b) Let (xn, yn) be a Cauchy sequence in X × Y . For each ε > 0 there exists N > 0
such that

n,m ≥ N ⇒ ‖(xn, yn)− (xm, ym)‖∞ ≤ ε

⇒ ‖(xn − xm, yn − ym)‖∞ ≤ ε

⇒ ‖xn − xm‖ ≤ ε and ‖yn − ym‖ ≤ ε.

This means that (xn) is a Cauchy sequence in X and (yn) is a Cauchy sequence
in Y . Since X and Y are assumed to be Banach spaces there exist x ∈ X and
y ∈ Y such that

‖xn − x‖ → 0 and ‖yn − y‖ → 0.

This implies that

‖(xn, yn)− (x, y)‖∞ = ‖(xn − x, yn − y)‖∞

= max{‖xn − x‖, ‖yn − y‖} → 0.

We conclude that (xn, yn) has the limit (x, y).

(c) Pick x ∈ X with ‖x‖ = 1 and v ∈ Y with ‖v‖ = 1, then

‖(x, 0)‖∞ = 1, ‖(0, v)‖∞ = 1, ‖(x, v)‖∞ = 1, ‖(x,−v)‖∞ = 1,

which shows that

‖(x, 0) + (0, v)‖2∞ + ‖(x, 0)− (0, v)‖2∞ 6= 2‖(x, 0)‖2∞ + 2‖(0, v)‖2∞.
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Since the parallelogram identity does not hold, it follows that the norm ‖ · ‖∞
on X × Y is not induced by an inner product. Hence, (X × Y, ‖ · ‖∞) is not a
Hilbert space.

Solution of Problem 2

(a) For each x ∈ X we have

‖Tx‖2 =
∞
∑

n=1

|λn|
2 |(x, en)|

2 ≤ sup
n∈N

|λn|
2

∞
∑

n=1

|(x, en)|
2 = sup

n∈N

|λn|
2‖x‖2,

which implies that

‖T‖ = sup
x 6=0

‖Tx‖

‖x‖
≤ sup

n∈N

|λn|.

Now write K = supn∈N |λn|. For each ε > 0 there exists N ∈ N such that
|λN | > K − ε. Hence,

‖TeN‖

‖eN‖
= |λN | > K − ε.

Hence we conclude

‖T‖ = sup
x 6=0

‖Tx‖

‖x‖
= sup

n∈N

|λn|.

(b) Assume that λn → 0. Define the operator

Tk : X → X, Tkx =

k
∑

n=1

λn(x, en)en, x ∈ X.

By part (a) it follows that ‖Tk‖ = max{|λ1|, . . . , |λk|} so that Tk is bounded. In
addition, dim ranTk ≤ k < ∞. Hence, Tk is compact for each k ∈ N. Also note
that

‖T − Tk‖ = sup
n>k

|λn|.

Let ε > 0 be arbitrary. There exists N > 0 such that

n ≥ N ⇒ |λn| ≤ ε

⇒ ‖T − Tn‖ ≤ ε.

This implies that T is compact as well.

(c) Clearly, each λn is an eigenvalue of T with corresponding eigenvector en. Hence,
{λn : n ∈ N} ⊂ σ(T ). Since the spectrum of a linear operator is closed it also
follows that clos {λn : n ∈ N} ⊂ σ(T ).

If λ /∈ clos {λn : n ∈ N} then there exists a δ > 0 such that |λ − λn| > δ for
each n ∈ N. Note that

(T − λ)−1x =
∞
∑

n=1

1

λn − λ
(x, en)en, x ∈ X.
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Hence,

‖(T − λ)−1x‖2 =

∞
∑

n=1

|(x, en)|
2

|λn − λ|2
≤

1

δ2

∞
∑

n=1

|(x, en)|
2 =

1

δ2
‖x‖2.

Hence, (T − λ)−1 is bounded so that λ ∈ ρ(T ). We conclude that σ(T ) =
clos {λn : n ∈ N}.

Solution of Problem 3

(a) Let X be a Banach space and let Y be a normed linear space. Let F ⊂ B(X, Y )
and assume that

M =
{

x ∈ X : sup
T∈F

‖Tx‖ < ∞
}

is nonmeager. Then the elements T ∈ F are uniformly bounded:

sup
T∈F

‖T‖ < ∞.

(b) (i) The fact that fy : X → K defined by fy(x) = (Tx, y)/‖y‖ is a linear map
follows from:

fy(λx+ µz) =
(T (λx+ µz), y)

‖y‖

=
(λTx+ µTz, y)

‖y‖

=
λ(Tx, y)

‖y‖
+

µ(Tz, y)

‖y‖

= λfy(x) + µfy(z).

(ii) Let x ∈ X be arbitrary, then

|fy(x)| =
|(Tx, y)|

‖y‖
≤

‖Tx‖ ‖y‖

‖y‖
= ‖Tx‖.

This shows that
sup
y 6=0

|fy(x)| < ∞

for all x ∈ X .

(iii) By the uniform boundedness principle it follows that supy 6=0
‖fy‖ < ∞.

Since (Tx, y) = (x, Ty) it follows with x = Ty/‖y‖ that

‖Ty‖2

‖y‖2
= fy

(

Ty

‖y‖

)

≤ ‖fy‖
‖Ty‖

‖y‖

so that

‖T‖ = sup
y 6=0

‖Ty‖

‖y‖
≤ sup

y 6=0

‖fy‖ < ∞

which shows that T is bounded.
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Solution of Problem 4

(a) Assume that x, y ∈ ⊥Z and λ, µ ∈ K. If f ∈ Z, then

f(λx+ µy) = λf(x) + µf(y) = 0,

which implies that λx+µy ∈ ⊥Z as well. This shows that ⊥Z is a linear subspace
of X .

(b) Assume that xn ∈ ⊥Z for all n ∈ N and xn → x. If f ∈ Z, then f(xn) = 0 for
all n ∈ N so that

|f(x)| = |f(x− xn) + f(xn)|

≤ |f(x− xn)|+ |f(xn)|

= |f(x− xn)|

≤ ‖f‖ ‖xn − x‖ → 0.

This implies that f(x) = 0 so that x ∈ ⊥Z as well. Hence, ⊥Z is closed in X .

(c) Let x ∈ ⊥Z2, then f(x) = 0 for all f ∈ Z2. Since Z1 ⊂ Z2 it follows that
f(x) = 0 for all f ∈ Z1, which means that x ∈ ⊥Z1. Hence,

⊥Z2 ⊂
⊥Z1.

(d) If f ∈ Z, then f(x) = 0 for all x ∈ ⊥Z. Hence, f ∈ (⊥Z)⊥.
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